

UNIV 2014 Assignment #3

Deadline: April 10, 2019

- 1) [Vector spaces] Prove or disprove the following statements.
 - a) \mathbb{R}^2 with the usual operations of scalar multiplication and vector addition is a vector space when the field F is \mathbb{R} .
 - b) \mathbb{R}^2 with the usual operation of scalar multiplication but with vector addition given by $x “+” y = 2(x + y)$ is a vector space when the field F is \mathbb{R} .
- 2) [Subspaces] Determine whether the following subsets are subspaces of the given vector spaces.
 - a) $U=\{A \in R^{2X2} \mid A^T = A\}$, \mathbb{R}^{2X2} (\mathbb{R}^{2X2} is the vector space of all real 2 by 2 matrices). [Also find the dimension of \mathbb{R}^{2X2} .]
 - b) $W=\{(x, y, z) \in R^3 \mid x \geq y \geq z\}$, \mathbb{R}^3
- 3) [Linear independence] Let P_1 and P_2 be non-zero column vectors and $A P_1=2 P_1$ and $A P_2=3 P_2$. Show that P_1 and P_2 are linearly independent.
- 4) [Basis and dimension] Given 4 vectors a , b , c , d .
 $a=[1 \ 1 \ -2 \ 0 \ -1]$, $b=[1 \ 2 \ 0 \ -4 \ 1]$,
 $c=[0 \ 1 \ 3 \ -3 \ 2]$, $d=[2 \ 3 \ 0 \ -2 \ 0]$
 - a) Find the matrix A consisting of rows that are the vectors a , b , c , d and find the echelon form E of the matrix A .
 - b) Find a basis for the vector space spanned by the vectors a , b , c , d . The basis is given by the rows of the matrix E .
 - c) Find the dimension of that vector space.
 - d) Find the matrix A^T (its columns are the vectors a , b , c , d) and find the echelon form F of the matrix A^T .
 - e) Find another basis for the vector space spanned by the vectors a , b , c , d . The basis is given by the pivotal columns of A^T .
- 5) [Fundamental subspaces] Let $A=\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & -2 \end{bmatrix}$.
 - a) Find the echelon form of A .
 - b) Find a basis for the row space.
 - c) Find a basis for the column space.
 - d) Find a basis for the nullspace.
 - e) State the dimensions of the row space, column space, and the nullspace.
- 6) [Fundamental Theorem of Linear Algebra]
Let $A=\begin{bmatrix} 1 & 0 & -1 \\ 3 & 1 & -1 \\ 9 & 5 & 1 \\ 9 & 8 & 7 \end{bmatrix}$.
 - a) Find a basis for the the row space and a basis for the nullspace.
 - b) What is the sum of dimensions of row space and the nullspace equal to?
 - c) Verify that all vectors in the basis of the nullspace are orthogonal to all vectors in basis of the row space.